شماره ركورد :
952559
عنوان مقاله :
استخراج مدل رقومي زمين از ابرنقاط با ارائه يك روش پيش رونده مورفولوژي مبنا
پديد آورندگان :
اميني اميركلايي، حامد دانشگاه تهران - پرديس دانشكده هاي فني - دانشكده مهندسي نقشه برداري و اطلاعات مكاني , عنايتي، حميد دانشگاه خواجه نصيرالدين طوسي - دانشكده نقشه برداري , ويسي، مريم دانشگاه خواجه نصيرالدين طوسي - دانشكده نقشه برداري
اطلاعات موجودي :
فصلنامه سال 1396 شماره 102
تعداد صفحه :
13
از صفحه :
53
تا صفحه :
65
كليدواژه :
مدل رقومي زمين , ابرنقطه , مورفولوژي , المان ساختاري
چكيده فارسي :
مدل رقومي زمين (DTM)نمايش آماري از سطح پيوسته زمين با استفاده از تعدادي نقطه با مختصات مشخص مي باشد. استخراج مدل رقومي زمين به عنوان يكي از مهمترين محصولات فتوگرامتري و سنجش ازدور كه پايه بسياري از پروژه هاي كاربردي است، همواره مدنظر كارشناسان بوده است. با فراهم شدن امكان تهيه نقاط با مختصات سه بعدي و دقت بالا از سطح زمين با استفاده از ليدار و يا تناظريابي چگال از تصاوير رقومي هوايي، زمينه دستيابي به مدل رقومي سطحي (DSM) با دقت مكاني بالافراهم گشت. با اين حال رسيدن از مدل رقومي سطحي به مدل رقومي زمين همچنان موضوعي پرچالش در نظر محققان است. در اين مقاله روشي كاربردي در راستاي استخراج مدل رقومي زمين با استفاده از ابرنقاط طراحي و پياده سازي شد. در اين روش طي دو روند مجزا و با درنظرگيري خصوصيات ساختاري محيط، عوارض غيرزميني استخراج شده و پس از تلفيق آنها نتيجه نهايي حاصل گشته است. به طوريكه ابتدا يك روند مورفولوژي مبناي پيشرونده طراحي شد كه در آن طي افزايش تدريجي ابعاد المان ساختاري عوارض غيرزميني شناسايي شدند. روند دوم بر مبناي ژئودزيك مورفولوژي و افزايش تدريجي المان ارتفاعي بوده است. بهره گيري از دو روند به دليل پوشش هاي متنوع، ناهمواري هاي متفاوت و عوارض بسيار متنوع مناطق مختلف صورت گرفت تا عملكرد روش پيشنهادي افزايش يابد. پس از حذف عوارض شناسايي شده و بازيابي مناطق از دست رفته از طريق درون يابي مكعبي، مدل رقومي نهايي حاصل گشت. جهت ارزيابي از ابرنقاط حاصل از تناظريابي متراكم تصاوير هوايي رقومي و همينطور ابرنقاط ليدار بهره گرفته شد. نتايج ارزيابي در 7 ناحيه مطالعاتي نشان از خطاي RMSE متوسط 68/0 متر در استخراج مدل رقومي زمين و متوسط 85/4% در شناسايي عوارض غيرزميني داشت.
چكيده لاتين :
The Digital Terrain Model (DTM) is a statistical presentation of the earth surface using some points with predefined 3D coordinates. Extracting the DTM as an important product of photogrammetry and remote sensing that is the basis of many practical projects, has always been considered for experts. LiDAR is a powerful equipment that can provide 3D point cloud with high accuracy from the earth. Nowadays, advances in technology make the generating 3D point cloud from the digital aerial images by dense matching feasible. These point clouds represents an approximate Digital Surface Model (DSM) of the earth. The DSM contains both terrain points and off-terrain points, but the DTM contains only the terrain points. In other words, the DTM presents a bare earth without any natural and artificial objects. Generating the DTM using the DSM is a challenging topic in photogrammetry and remote sensing. In this paper an algorithm with two independent approaches is proposed. Before beginning the process, the irregular point clouds was gridded, interpolate and convert to the image by specifying a point interval. The first proposed approach was a progressive morphological filter that detect the off-terrain points from the DSM. This approachused the simple morphological filter in a specific procedure with four steps. In the first step, a minimal surface was generated by identifying the points which have minimum elevation in predefine scan windows. The structural element of the morphological filters should be determined. As it is a progressive filter, a vector that contains the structural elements sizes was determined in the second step. In the third step, a morphological opening was applied on the point cloud with a structural element accordance with the produced vector in step1. For each window size in the vector, an elevation threshold was calculated by multiplying the interval distance and supplied slope parameter. Then, the difference between initial surface and the result of applying the morphological opening was computed. The points with difference value more than the calculated elevation threshold was selected as off-terrain points. In the second approach an iterative procedure was designed which was based on morphological filters. The geodesic dilation was a combination of traditional morphological filter. Although the morphological filters operated based on the image and structural element, geodesic dilation operated with two images including the mask and the marker. In geodesic dilation of size one the marker image was dilated by an elementary isotropic structural element and the resulting image was forced to remain below the mask image. In other words, the mask image acts as a limitation for the dilated marker image. Image reconstructing using geodesic dilation on an image was done by performing some successive geodesic dilations on the image. The results of geodesic dilation was depending on the elevation value. If this value was low, only the building ridge line was extracted andoff-ground. Moreover, if the elevation value was high, some of the bare earth was cut as off-terrain, wrongly. Hence, an iterative procedure was proposed to make the extracting the most of the object possible. In this way, the probability of error was reduced. In each loop, the elevation value was increased and some objects was extracted using geodesic dilation. Among the extracted parcels in each loop, the parcels which have local range variation more than a threshold were selected and the others were removed. The local range variation for each point was computed by specifying a window and calculating the difference between maximum and minimum elevation value in that window. This procedure was repeated till analyzing all of the elevation values. Finally, the results of detecting the off terrain points using the both of approach were accumulated to acquire the final class of off-terrain points. Then this points were removed and the cubic interpolation was employed in order to retrieval the elevation of the losses points and generate the DTM. In order to analyze the performance of the proposed algorithm, 7 test area was used. The point cloud of area 1, 2 and 3 were produced using dense matching of digital aerial images (Ultracam) by National GeographyOrganization of Iran. The point spacing of these areas is about 0.5 meter. The point cloud of area 4, 5, 6 and 7 were captured using LiDAR by International Society for Photogrammetry and Remote Sensing. The point spacing of these areas were 3, 1, 2.5 and 3 meter, respectively. The data set covered the most of the features such as steep slopes, mixture of vegetation and building, bridge underpass, road and building with various roof shape. Evaluating the performance of proposed algorithm represented the 4.85% error for extracting the off-terrain points and 0.68 meter error for generated DTM in all test areas, averagely. The evaluation results clarify the ability of proposed practical algorithm in generating the DTM using the DSM
سال انتشار :
1396
عنوان نشريه :
اطلاعات جغرافيايي سپهر
فايل PDF :
3624620
عنوان نشريه :
اطلاعات جغرافيايي سپهر
اطلاعات موجودي :
فصلنامه با شماره پیاپی 102 سال 1396
لينک به اين مدرک :
بازگشت