شماره ركورد :
954423
عنوان مقاله :
تخمين كربن آلي خاك با استفاده از مدل‌هاي شبكه عصبي مصنوعي و رگرسيون خطي چندگانه بر اساس پردازش تصاوير رنگي
عنوان فرعي :
Estimation of Soil Organic Carbon using Artificial Neural Network and Multiple Linear Regression Models based on Color Image Processing
پديد آورنده :
عطائيان پريسا
پديد آورندگان :
احمدي مقدم پرويز نويسنده , سپهر ابراهيم نويسنده دانشكده كشاورزي,گروه علوم خاك, دانشگاه اروميه,ايران
اطلاعات موجودي :
دوفصلنامه سال 2018 شماره 0
تعداد صفحه :
12
از صفحه :
137
تا صفحه :
148
كليدواژه :
كربن آلي خاك , دوربين ديجيتال , كشاورزي دقيق , شبكه عصبي
چكيده فارسي :
كربن آلی خاك منبع عظیمی از مواد مغذی برای گیاه بوده و به‌عنوان عاملی فعال در گسترش ساختمان خاك، نقش مهمی در بهبود حاصل‌خیزی خاك‌های كشاورزی دارد. هدف اصلی از این پژوهش، تخمین میزان كربن آلی خاك در زمین‌های كشاورزی با استفاده از یك روش ساده، سریع و كم هزینه می‌باشد. 80 نمونه خاك از مزارع كشاورزی شمال آذربایجان غربی تا جنوب استان به‌صورت انتخابی جمع‌آوری شد و پس از تعیین مقدار كربن آلی نمونه‌ها در آزمایشگاه، نمونه‌ها در شرایط كنترل شده مورد تصویربرداری قرار گرفتند. تصاویر رنگی در چندین فضای رنگی مختلف تحلیل شدند و در هر فضای رنگی، مدل‌های شبكه عصبی و رگرسیون چندگانه برای برآورد میزان كربن آلی خاك توسعه یافت. نتایج مدل‌سازی خطی نشان داد كه بالاترین ضریب همبستگی در فضاهای رنگی LAB و LUV به‌ترتیب 0/91 و 0/92 برای مدل‌های استخراج شده از مؤلفه‌های این فضاها و كربن آلی خاك به‌دست آمد. نتایج حاصل از طبقه‌بندی به‌وسیله شبكه عصبی نشان داد كه ضریب همبستگی در فضای RGB‌ بالاترین مقدار را داشته و برابر با 0/94 بوده است. نتایج نشان داد كه در تمامی فضاها مدل‌سازی شبكه عصبی دقت مدل را افزایش داده است.
چكيده لاتين :
Introduction The color of soil depends on its composition and this feature is easily available and rather stable. Fast and accurate determination of soil organic matter distribution in the agricultural fields is required, especially in precision farming. General laboratory methods for determining the soil organic carbon are expensive, time-consuming with many repetitions, and high consumption of chemicals. Soil scientists use the Munsell soil color diagrams to define the soil color. Due to the nature of Munsell color diagrams; this system is less suitable for recognizing exact color of the soil because of weak relationship and limited number of chips. Fast methods like image processing, colorimetric and spectroscopy provide a description of most physical characteristics of the soil color. Some of the advantages of using digital cameras was used in this study, are simple sampling of screened soil, being free from chemicals and toxic materials and being fast, inexpensive and precise. Materials and Methods In this research, 80 A-horizon (0-10 cm) soil samples were collected from various agricultural soils in west Azerbaijan, in the North West of Iran. Soil texture of these fields was loam clay and clay. The amount of organic carbon in samples was determined. The camera was installed at the distance of 0.5 m from the Petri dish on the lighting compartment. Captured images with the digital camera were saved in RGB color space. Processing operations were done by MATLAB 2012 software. The features extracted from the color images are used to model the soil organic carbon including the color features in different spaces. Four-color spaces including RGB, HSI, LAB and LUV were studied to find the relation between the color and the soil organic carbon. Results and Discussion The correlation of R component in the RGB model shows a strong single-parameter relation with the organic carbon as R2=0.83. This good relationship can be due to the compound information of the red color component on both brightness and chromaticity dimension. The results also show that the organic carbon has a relatively strong correlation with the light parameters, intensity and lightness in the HSI, Lab and LUV color spaces respectively. It also has a weak correlation with other parameters, since they cannot have a proper linear correlation with organic carbon due to their structural nature. Results show that the highest correlation is obtained when the R and G components participate in modeling and the component B is omitted. One explanation of this high correlation could be the high sensitivity of component B to the intensity and the angle of light. Even a small change in light changes this component. Thus, in order to reduce the effect of this component, it is better to omit it from the models and make models independent of it. In next section, 51 data were used to train neural network, 14 data were used to test the network and 12 data for network validating. The amount of soil organic carbon was output of the neural networks that was estimated after training using the color component values of each segment. To assess the accuracy of the network, estimated values and actual values of each sample were plotted in a graph. The minimum MSE values were 7.28e-6 with 16 neurons, 3.77e-6 with 14 neurons, 4.8e-3 with 10 neurons and 3.77e-6 with 12 neurons for RGB, HSI, Lab and LUV color spaces respectively. Conclusions The availability of digital cameras, possibility to use it in different situations, being inexpensive and providing many samples are the advantages of this method to estimate the soil organic carbon amount. Therefore, digital photography can be used as an analytical method to evaluate the soil fertility. It also requires a low cost of sample testing, and can provide a good possibility of time and place classification for studying a vast area. However to develop more reliable models, more effort is needed, such as collecting more soil samples of different areas that include a wide range of soil features.
عنوان نشريه :
ماشين هاي كشاورزي
عنوان نشريه :
ماشين هاي كشاورزي
اطلاعات موجودي :
دوفصلنامه با شماره پیاپی 0 سال 2018
لينک به اين مدرک :
بازگشت