شماره ركورد :
957596
عنوان مقاله :
پيش‌بيني دما، رطوبت و انرژي مصرفي در شرايط محيطي سالن مرغداري به كمك شبكه عصبي مصنوعي
عنوان فرعي :
Temperature, Humidity and Energy Consumption Forecasting in the Poultry Hall Using Artificial Neural Networknetwork
پديد آورنده :
غلامرضایی نعیمه
پديد آورندگان :
قادری كوروش نويسنده گروه مهندسی آب، دانشكده كشاورزی، دانشگاه شهید باهنر كرمان Qaderi K , جعفری نعیمی كاظم نويسنده بخش مهندسی مكانیك بیوسیستم، دانشكده كشاورزی، دانشگاه شهید باهنر كرمان Jafari Naeimi K
سازمان :
بخش مهندسی مكانیك بیوسیستم، دانشكده كشاورزی، دانشگاه شهید باهنر كرمان
اطلاعات موجودي :
دوفصلنامه سال 2017 شماره 0
تعداد صفحه :
12
از صفحه :
546
تا صفحه :
557
كليدواژه :
انرژي , دما , شبكه عصبي مصنوعي , مدل‌سازي , كنترل الكترونيك
چكيده فارسي :
فراهم شدن شرایط مطلوب سالن‌های صنعتی پرورش مرغ گوشتی، مستلزم ثابت بودن عامل‌های دما و رطوبت داخل سالن در حد بهینه و كاهش دامنه تغییرات آن از مقدار بهینه است. یكی از راه‌های تنظیم و تثبیت این عامل‌ها، استفاده از ابزار دقیق و سامانه‌های الكترونیكی با دقت اندازه‌گیری بالا برای كنترل تجهیزات تهویه است. در این تحقیق از شبكه عصبی پرسپترون چندلایه (MLP) به‌منظور پیش‌بینی دما و رطوبت و همچنین انرژی مصرفی تجهیزات استفاده شد. ورودی‌های مدل شامل طول، عرض و ارتفاع قرارگیری حس‌گرهای واحد كنترل الكترونیكی در60 نقطه با مختصات متفاوت بودند. شبكه دولایه با ساختار 1-10 با R² و MSE به‌ترتیب برابر با 0/96 و 0/00912 بهترین نتیجه را برای پیش‌بینی دما داشت. شبكه سه لایه با ساختار 1-10-20 بهترین نتیجه را برای پیش‌بینی رطوبت با R² و MSE به‌ترتیب برابر با 0/8 و 0/00783 و همچنین شبكه سه لایه با ساختار 1-10-10 بهترین نتیجه را برای پیش‌بینی انرژی مصرفی با R² و MSE به‌ترتیب برابر با 0/98 و 0/00114 نشان داد. از نتایج تحقیق می‌توان در بهینه‌سازی و مدیریت مصرف انرژی در مرغداری‌ها بهره گرفت.
چكيده لاتين :
<strong >Introduction </strong > Energy consumption management is one of the most important issues in poultry halls management. Considering the situation of poultry as one of the largest and most developed industries, it is needed to control growing condition based on world standards. The neural networks as one of the intelligent methods are applied in a lot of fields such as classification, pattern recognition, prediction and modeling of processes. To detect and classify several agricultural crops, a research was conducted based on texture and color feature. The highest classification accuracy for vegetables, grains and fruits with using artificial neural network were 80%, 86% and 70%. In this research, the ability to Multilayer Perceptron (MLP) Neural Network in predicting energy consumption, temperature and humidity in different coordinate placement of electronic control unit sensors in the poultry house environment was examined. <strong >Materials and Methods </strong > The experiments were conducted in a poultry unit (3000 pieces) that is located in Fars province, Marvdasht city, Ramjerd town, with dimensions of 32 meters long, 7 meters wide and 2.2 meters height. To determine the appropriate placement of the sensor, 60 different points in terms of length, width and height in poultry were selected. Initially, the data was divided into two datasets. 80 percent of total data as a training set and 20 percent of total data as a test set. From180 observations, 144 data were used to train network and 36 data were used to test the process. There are several criteria for evaluating predictive models that they are mainly based according to the difference between the predicted outputs and actual outputs. To evaluate the performance of the model, two statistical indexes, mean squared error (MSE) and the coefficient of determination (R²) were used. <strong >Results and Discussions </strong > In this study, to train artificial neural network for predicting the temperature, humidity and energy consumption, the trainlm algorithm (Levenberg-Marquardt) was used. To simulate temperature, humidity and energy consumption, networks were trained with two and three layers, respectively. Network with two layers with10 neurons in the hidden layer and one neuron in the output layer with (R²) equal to 0.96 and (MSE) equal to 0.00912, was given the best result for predicting temperature. For humidity electronic sensors, results showed that network with three layers with the 10 neurons in the first hidden layer, 20 neurons in the second hidden layer and one neuron in the output layer with (R²) equal to 0.8 and (MSE) equal to 0.00783 was the best for predicting humidity. Finally, network with two layers with 10 neurons in the first hidden layer, 10 neurons in the second hidden layer and one neuron in the output layer was selected as the optimal structure for predicting energy consumption. For this topology, (R²) and MSE were determined to 0.98 and 0.00114, respectively. Linear and multivariate regression for the parameters affecting temperature, humidity and energy consumption of electronic sensors was determined by the STATGR software. Correlation coefficients indicated that parameters such as length, height and width of the electronic control sensors placed in the poultry hall justified 82% of the temperature changes, 61% of the humidity changes and 92% of the energy consumption changes. Therefore, comparing with correlation coefficients obtained from the neural network models, the highest correlation coefficient was related to energy parameter and the lowest correlation was linked to humidity parameter. <strong >Conclusions </strong > The results of the study indicated the high performance for predicting temperature, humidity and energy consumption. The networks hadthree inputs including length, width and height of electronic sensor positions and an output for temperature, humidity and energy consumption. For training networks the multiple layer perceptron (MLP) with error back propagation learning algorithm (BP) was used. Functions activity for all networks in hidden layers were tangentsigmoid and in the output layer, linear (purelin). Comparing the results of artificial neural network and logistic regression model showed that artificial neural network model with correlation coefficients of 0.98 (energy), 0.96 (temperature) and 0.8 (humidity) provided closer data to the actual data compared with regression models with correlation coefficients of 0.92, 0.82 and 0.61 for the energy, temperature and humidity respectively.
عنوان نشريه :
ماشين هاي كشاورزي
عنوان نشريه :
ماشين هاي كشاورزي
لينک به اين مدرک :
بازگشت