پديد آورندگان :
صفر، محمود دانشگاه تهران - موسسه ژئوفيزيك , قادر، سرمد دانشگاه تهران - موسسه ژئوفيزيك - گروه فيزيك فضا , احمدي گيوي، فرهنگ دانشگاه تهران - موسسه ژئوفيزيك - گروه فيزيك فضا , محب الحجه، عليرضا دانشگاه تهران - موسسه ژئوفيزيك - گروه فيزيك فضا , مزرعه فراهاني، مجيد دانشگاه تهران - موسسه ژئوفيزيك - گروه فيزيك فضا
كليدواژه :
چرخند حارهاي , توسعه جريان جتي , گذار برون حارهاي , تاوايي پتانسيلي , مدل WRF
چكيده فارسي :
چرخند حاره اي چاپالا بعد از توفان گونو دومين توفان حاره اي قوي منطقه شمالي اقيانوس هند بوده است. در خصوص توفان گونو بايد گفت كه اين توفان تاثير مستقيم بر بارش سواحل جنوب شرقي ايران داشته است، حال آنكه هدف پژوهش حاضر بررسي تاثير غيرمستقيم توفان چاپالا در بارش هاي بسيار شديد غرب ايران است. همچنين اين موضوع مورد مطالعه قرار گرفته است كه آيا اين تاثير غيرمستقيم به دليل گذار برون حاره اي توفان از طريق شبه جزيره عربستان و توسعه جريان جتي عرض هاي مياني است؟ براي رسيدن به اين هدف، شبيه سازي هايي مبتني بر مدل عددي WRF انجام شده و مسير حركت بسته هواي نمونه فرضي نيز با استفاده از مدل ناپاياي HYSPLIT مورد بررسي قرار گرفته است. نتايج حاصل به روشني انتقال جرم و انرژي از سطوح پايين وردسپهر عرض هاي حاره اي به سطوح بالاي وردسپهر در عرض هاي مياني را نشان مي دهد.
نحوه تاثير اين چرخند حاره اي بر سامانه هاي فعال در عرض هاي مياني شامل جدا شدن مقادير كوچك تاوايي پتانسيلي از مركز چرخند چاپالا و صعود آن بر روي خط هم دماي پتانسيلي 320 كلوين تا منطقه وردايست در عرض هاي مياني، انتقال جرم به صورت رطوبت نسبي بر روي صحراي خشك شبه جزيره عربستان از مرز منطقه كژفشاري و حاره اي با همرفت مورب و همچنين افزايش سرعت مركز جت و جابه جايي آن به عرض هاي جغرافيايي شمالي تر بوده است.
چكيده لاتين :
The cyclone Chapala was the second strongest tropical cyclone among the cyclones that has been formed and
recorded over the Arabian Sea. On October 28, 2015, the cyclone Chapala developed over western India from the
monsoon trough. After reaching its peak intensity on October 30, 2015, it started to move toward the Yemeni
island of Socotra. Then, on November 2, 2015, the cyclone entered the Gulf of Aden and became the strongest
cyclone ever developed in that water area. The cyclone Chapala was finally decayed on November 4, 2015.
The present work is devoted to the study of the extratropical transition of the cyclone Chapala and its impact
on the development of mid-latitude disturbances and, in particular, the jet stream over the western part of Iran. In
fact, the main objective of the current work is to find out whether there is any link between the extreme rainfall
over western Iran and the cyclone Chapala via the extratropical transition of the cyclone and its impact on the
development of mid-latitude weather systems including the jet stream. To this end, the Weather Research and
Forecasting (WRF) model is used to simulate the cyclone Chapala during its lifetime from the development stage
to the decay stage. The advanced research WRF model is a fully compressible, non-hydrostatic mesoscale
numerical weather prediction model. This model has been developed at National Center for Atmospheric
Research (NCAR). For the ARW dynamical core, an Arakawa-C horizontal grid is used, and for temporal
integration of governing equations, a Runge–Kutta scheme with a smaller time step for fast waves (such as sound
waves) is used. The WRF model simulations are performed for the period 1 to 11 November 2015. To perform
the WRF model simulations, the NCEP FNL (Final) Operational Global Analysis data, which are available
operationally every six hours, are used to prepare the initial and lateral boundary conditions. In this study, the
ARW dynamical core of the WRF model is used. The WRF model is configured with one nest and 45 km
horizontal grid resolution in a Lambert projection. The computational domain of the WRF model covers Iran, the
Persian Gulf, the Oman Sea and the Arabian Sea. In addition, the following physical parametrizations are used:
the WSM3 scheme for the microphysics, the RRTM scheme for the longwave radiation, the Dudhia scheme for
the shortwave radiation, the MM5 method for the surface layer, the Noah method for the land surface, the YSU
scheme for the planetary boundary layer, and the Kain–Fritsch scheme for the cumulus convection. Further, to
simulate the air parcel trajectories, the Hybrid Single Particle Lagrangian Integrated Trajectory Model
(HYSPLIT) is used. The HYSPLIT model can be used for numerical simulation of air parcel trajectories as well
as the complex transport, dispersion, chemical transformation, and deposition simulations. Here, the HYSPLIT is
coupled with the WRF model to carry out forward and backward simulations of air parcel trajectories over Iran
during the period of the activity of the cyclone Chapala.
The diagnostics like potential vorticity, as computed and presented based on the WRF numerical model
results and the air parcel trajectory simulations by the HYSPLIT model, point to a clear transfer of mass and
energy from the tropical lower troposphere to the upper troposphere in midlatitudes during the extratropical
transition of the cyclone Chapala. The marked effect of the cyclone on the weather systems leading to the
extreme precipitation in the southwest of Iran is confirmed.