شماره ركورد :
970282
عنوان مقاله :
پيش¬بيني رواناب سالانه سد زاينده¬رود و دوره¬هاي ترسالي و خشكسالي هيدرولوژيكي با استفاده از شبكه¬هاي بيزين
عنوان فرعي :
Prediction of Zayandeh Rood Dam Inflow and Hydrological Wet and Dry Periods Using Bayesian Networks
پديد آورنده :
نوربه پریسا
پديد آورندگان :
روزبهانی عباس نويسنده استادیار گروه مهندسی آبیاری و زهكشی، پردیس ابوریحان، دانشگاه تهران Roozbahani Abbas , كاردان مقدم حمید نويسنده دانش آموخته دكترای گروه مهندسی آبیاری و زهكشی، پردیس ابوریحان ، دانشگاه تهران و مركز تحقیقات آب وزارت نیرو Kardan Moghaddam Hamid
سازمان :
دانشجوی كارشناسی ارشد، گروه مهندسی آبیاری و زهكشی، پردیس ابوریحان، دانشگاه تهران
تعداد صفحه :
14
از صفحه :
633
تا صفحه :
646
كليدواژه :
پيش¬بيني رواناب , خوشه¬بندي , سد زاينده¬رود , شبكه¬ي بيزين , شاخص SDI
چكيده فارسي :
در طی چند دهه اخیر در كشور، روند كاهش رواناب مشاهده می¬شود بطوری‌كه بسیاری از مخازن سدها در دوره¬های نرمال نیز با بحران تأمین آب مواجه هستند كه عمدتاً به دلیل برداشت¬های بی¬رویه، عدم مدیریت عرضه و تقاضا و خشكسالی می‌باشد. در این پژوهش جهت پیش¬بینی رواناب ورودی به سد زاینده¬رود با رویكرد احتمالاتی شبكه¬ی بیزین 5 سناریوی كلی طرح¬ریزی شده كه براساس آن، رواناب بصورت صریح عددی (یك سناریو)، بازه¬ای (یك سناریو) و پیش¬بینی دوره¬های ترسالی و خشكسالی هیدرولوژیكی (سه سناریو) پیش¬بینی شده است. بدین منظور پارامترهای بارش، رواناب، برف و حجم آب انتقالی از تونل¬های انتقال آب به¬عنوان ورودی به مدل و رواناب ورودی به سد زاینده¬رود به عنوان پیش¬بینی شونده لحاظ شده¬اند كه جهت یافتن بهترین ساختار شبكه در این سناریوها الگوهای مختلفی برای ورود این پارامترها به مدل تعریف شده. نتایج مدلسازی شبكه بیزین نشان داد كه سناریوی تعریف شده برای پیش¬بینی رواناب ورودی به صورت صریح عددی توانایی خوبی در پیش¬بینی داشته بطوری‌كه در الگوی منتخب ضریب همبستگی بین داده¬های مشاهداتی و پیش¬بینی شده 78/0 بوده است. هم¬چنین از بین سناریوهای پیش¬بینی دوره¬های ترسالی و خشكسالی هیدرولوژیكی كه در آن تقسیم¬بندی رواناب براساس شاخص SDI و میانگین درازمدت و تقسیم¬بندی سایر پارامترها با خوشه¬بندی انجام شده است، در الگوی برتر قادر به پیش¬بینی با دقت 75 درصد می¬باشد اما مدل پیش¬بینی بازه¬ای رواناب دقت خوبی در پیش¬بینی نداشته است. بهره گیری از این نتایج امكان برنامه¬‌ریزی منابع آب را جهت تخصیص بهینه توسط متولیان آب این منطقه فراهم خواهد نمود.
چكيده لاتين :
Introduction: During the last decades, runoff decreasing is observed in our country as many dam reservoirs face water supply crisis even in normal periods. This decreasing trend is mainly due to the uncontrolled withdrawals, lack of supply and demand management as well as droughts. Using different flow prediction methods for surface water resources state analysis is important in water resources planning aspects. These methods can provide the possibility of planning for proper operation by using different factors to meet the needs of the region. Due to the stochastic nature of the hydrological processes, various models are used for prediction. Among these models, Bayesian Networks (BNs) probabilistic model has been considered by many researchers in recent years and it has shown the efficiency on these issues. Due to the growth of demand in different sectors and crises caused by drought of the water supply system that has put the basin under water stress, the water shortage has appeared in different sectors. Regarding to the strategic situation of Zayandeh Rood Dam in providing water resources for tap water, industry, agriculture and environmental water rights in Gavkhooni basin, this research presents the development of a model for prediction of Zayandeh Rood Dam annual inflow and hydrological wet and dry periods. Since the uncertainty of the predictions increase when the prediction horizon increases, this factor is the most important challenge of long-term prediction. Using Bayesian Network with reducing this uncertainty, provides the possibility of planning for water resources management, especially for optimal water allocation. Materials and Methods: In this study for prediction of zayandeh Rood dam inflow five scenarios were defined by applying Bayesian Network Probabilistic approach. According to this, prediction of numerical annual dam inflow (scenario1), annual wet and dry hydrological periods (scenario 2, 3, 4) and range of annual inflow (scenario 5) were performed. For this purpose rainfall, runoff, snow, and discharge of transferred water to the basin from the first and the second tunnel of koohrang and Cheshmeh Langan tunnel were considered as predictor variables and the amount of Zayandeh Rood Dam inflow was selected as predictant for modeling and different conditions of input variable’s learning have been analyzed considering different patterns. Calibration and validation of the model have been done based on observed annual inflow data and the relevant predictors in scenario 1, by using SDI Hydrological drought index and long-term average of inflow to classify the runoff and clustering the other parameters in scenario 2, 3 and 4 and with classification of annual inflow data and other parameters by using clustering in scenario 5. To achieve this target, K-means method has been used for clustering and Davies-Bouldin and Silhouette Width has been used to determine optimal number of clusters. Results and Discussion: The results of Bayesian Network modeling showed that the scenario 1 has a good potential to predict the dam inflow so that the best pattern of this scenario (considering discharge of first tunnel of Koohrang and Cheshmeh Langan tunnel, Zayandeh Rood natural inflow and rainfall with two years lag time as predictor variables), has had a correlation coefficient of 0.78 between observed and predicted dam inflow and relative error of 0.21 which shows an acceptable accuracy in prediction. Among scenarios 2, 3 and 4 for prediction of wet and dry hydrological periods, scenario 2 in which classification of runoff has been based on the long-term average, in the best pattern (with dam inflow with one-year lag predictor), is able to be predicted up to 75% accuracy. The analysis of the results showed that the scenario 5 is not very accurate in prediction of dam inflow’s range. Conclusions: The results showed that the Bayesian Network model has a good efficiency to predict annual dam inflow numerically as well as hydrological dry and wet periods. Obtained results from prediction of hydrological dry and wet periods will be effective in better planning of water resources in order to considering possible ways of drought effect reduction. The overall results provide the possibility of water resources planning for the water authorities of this region. Systematic planning leads to optimal use of water and soil resources and helps considerably to analyze and modify the policy or rule curve of this dam for allocating water to downstream especially for agriculture and environment and industry sectors.
سال انتشار :
1397
عنوان نشريه :
آب و خاك
عنوان نشريه :
آب و خاك
لينک به اين مدرک :
بازگشت