كليدواژه :
حفاري انحرافي , گشتاور چرخشي , شبكه عصبي مصنوعي , بهينه سازي , الگوريتم
چكيده فارسي :
امروزه عمليات حفاري انحرافي بهطور گستردهاي در انواع شرايط زمينشناسي به كار ميرود، اما استفاده بهينه از اين فنّاوري در شرايط سنگي و سخت به دانش و تجربه بالاي مهندسي نياز دارد. مقدار گشتاور چرخشي يكي از پارامترهاي بسيار مهمي است كه بايد براي انجام عمليات حفاري انحرافي پيشبيني شود. در اين پژوهش جهت ارائه راهكار جديد براي پيشبيني گشتاور چرخشي موردنياز براي انجام عمليات حفاري انحرافي در لايههاي سنگي از روش تركيب شبكه عصبي مصنوعي و الگوريتم بهينهسازي مبتني بر جغرافياي زيستي استفاده شده است. درواقع براي بهينهسازي وزنهاي شبكه عصبي مصنوعي و بالا بردن تواناييهاي شبكه از الگوريتم مبتني بر جغرافياي زيستي بهره گرفته شده است. همچنين از نيروي محوري، سرعت چرخش مته، طول رشته حفاري، تغيير زاويه كلي گمانه، قطر iامين برقو، سرعت جريان گل و ويسكوزيته گل حفاري بهعنوان پارامترهاي ورودي مدل براي پيشبيني گشتاور چرخشي استفاده شده است. براي ارزيابي توانايي مدل در پيشبيني گشتاور چرخشي، از دادههاي پروژه انتقال گاز طبيعي غرب به شرق چين استفاده شده است. تعداد كل دادهها در اين پروژه 84 داده است كه از اين تعداد بهطور تصادفي، 75 درصد دادهها براي آموزش مدل و 25 درصد دادهها براي آزمون مدل استفاده شده است. نتايج حاصل از اين مطالعه بيانگر آن است كه مدل پيشنهادي ميتواند بهعنوان يك ابزار قدرتمند براي مدلسازي مسائل حفاري انحرافي مورد استفاده قرار گيرد.
چكيده لاتين :
Summary
Horizontal directional drilling (HDD) is a popular method for installation of both steel and plastic underground pipelines. Besides selecting the appropriate type and size of reamers the rotational torque is another important parameters that must be predicted for performing the reaming operation. In this study, hybrid artificial neural networks (ANN) with biogeography-based optimization (ANN-BBO) model were applied for predicting rotational torque. In fact BBO was used to better regulate the weights and biases of the ANN model. In this study, axial force on the cutter/bit, rotational speed of the bit, the length of drill string in the borehole, the total angular change of the borehole, the radius for the ith reaming operation, the mud flow rate and the mud viscosity are applied as input variables to predict the rotational torque. To assess the ability of the model to predict the rotational torque, West–East Natural Gas Transmission project in China was used. Results indicate that this model has high potentials for estimating the rotational torque using a set of listed input parameters.
Introduction
A major concern of many HDD projects is prediction of required rotation torque. It has been established that the required rotational torque at the drill rig depends on various factors, including geological conditions, drilling method, reamer cutter/bit size and type, rotary speed, axial force on bit, drilling mud properties, borehole diameter, length of drill string in the borehole, and borehole trajectory. In this area in recent years, studies have been done using traditional statistical methods, but this study focuses on the application of artificial intelligence in this field.
Methodology and Approaches
In this study, ANN method and BBO algorithm is used. We used BBO to better regulate the weights and biases of the ANN model. BBO is an evolutionary algorithm that is inspired by biogeography. In BBO, a biogeography habitat indicates a candidate optimization problem solution, and it is comprised of a set of features, which are also called decision variables, or independent variables. BBO consists of two main steps: migration and mutation.
Results and Conclusions
In this paper, 75% of the data sets were assigned for training purposes while 25% was used for testing of the network performance. Network with 7-8-1 structure is optimized and the results indicate that this model has high potentials for estimating the rotational torque.