عنوان مقاله :
كاربرد برآوردگرهاي مقاوم در تعيين دادههاي خارج از رديف؛ مطالعه موردي: دادههاي ژئوشيميايي منطقه شاه سليمان علي در استان خراسان جنوبي
عنوان به زبان ديگر :
Application of Robust Estimators in Determining the Outlier Data; a Case Study: Geochemical Data of Shah Soliman Ali, South Khorasan Province
پديد آورندگان :
گرانيان، حميد دانشگاه صنعتي بيرجند - گروه معدن , خواجه ميري، زهرا دانشگاه شهيد باهنر كرمان - گروه زمين شناسي
كليدواژه :
برآوردگر مقاوم , داده خارج از رديف , آمار چند متغيره , داده ژئوشيميايي , منطقه شاه سليمان علي , استان خراسان جنوبي
چكيده فارسي :
شناسايي و تعديل نمونههاي خارج از رديف چند متغيره اولين مرحله براي تحليل آماري دادههاي اكتشافي محسوب ميشود. كاهش بُعد دادهها به يك بُعد توسط فاصلهي نمونه از مركز دادهها و مقايسه آن با يك حد آستانه كليد اين كار محسوب ميشود. در برآوردگرهاي مقاوم از ماتريسهاي موقعيت و پراكندگي به جاي ماتريسهاي ميانگين و واريانس- كواريانس براي محاسبه اين فاصله استفاده ميشود. بنابراين براي مقاوم بودن اين فاصله زير مجموعهي بهينه به جاي كل دادهها براي محاسبهي اين ماتريسها به كار ميرود. چهار برآوردگر مقاوم MVE، MCD، S و SD در اين مقاله معرفي گرديدهاند. سپس از اين برآوردگرها براي تعيين نمونههاي خارج از رديف 146 نمونهي رسوبات آبراههاي منطقه شاه سليمان علي در استان خراسان حنوبي و براي نتايج آناليز 18 عنصر استفاده شده است. نتايج محاسبات نشان داده است كه روش كلاسيك فاصله ماهالانوبيتس 7 نمونه و برآوردگرهاي مقاوم MVE، MCD، S و SD به ترتيب 23، 35، 20 و 34 نمونه را به عنوان دادهي پرت معرفي ميكنند. همچنين آناليز مولفههاي اصلي در مد Q نشان داده است كه نمونههاي خارج از رديف با بارهاي منفي خود را در مولفهي دوم و ساير نمونهها تقريباً با بارهاي مثبت بالا در مولفهي اول خود را نشان ميدهند. تفكيك جامعهي نمونههاي خارج از رديف از ساير نمونهها نيز در نمودار پراكندگي بارهاي مولفهي دوم نسبت به مولفهي سوم امكانپذير است. استفاده از ماتريسهاي موقعيت و پراكندگي به دست آمده از برآوردگرهاي مقاوم در روشهاي آمارهاي چند متغيره يكي ديگر از كاربردهاي پيشنهادي مهم برآوردگرهاي مقاوم در تجزيه و تحليل دادههاي اكتشافي محسوب ميشوند.
چكيده لاتين :
Identification and modification of multivariate outlier data is the first step to analyze exploration data through multivariate statistics. A key to this problem is reducing the data dimension to one by the distance between the sample and central point of the data set and then by comparing it with a threshold. To calculate this distance, the location and scatter matrixes are used instead of the mean and variance-covariance matrixes in the robust estimators. Therefore, to maintain the robustness of distance, these estimators apply the optimal subset rather than the entire data matrix. This paper introduces four robust estimators namely the MVE, MCD, S and SD. Then these estimators are used to determine outlier data of 146 regional stream sediment samples of Shah Soliman Ali at South Khorasan province and also to analyze 18 elements. The results show that the Mahalanobis distance classical methods display 7 samples and robust estimators MVE, MCD, S and SD introduce 23, 35, 20 and 34 samples as outliers, respectively. The principal component analysis in Q mode also show that the outlier samples with negative loads and the other samples with approximately positive loads show themselves in the second and the third components, respectively. It is also possible to separate outlier data from the rest in the scatter plot of the loads of PC 2 vs the loads of PC 3. The use of the location and scatter matrixes done by robust estimators is another important application of these estimators in multivariate statistics methods of exploration data analysis. Introduction Human errors and changing nature of exploration data distribution are two main reasons in the creation of Outliers. The first step in the processing of the exploration data will be Identification and then modification of them. Existence of outliers is also caused the bias in the mean matrix and inflation in the variance-covariance matrix. So in this paper, we propose the use of robust estimators as one of the solutions and their performance is also evaluated. Methodology and Approaches Results of the analysis of 18 elements to 146 stream sediments samples is used at the exploration region of Shad Soliman Ali as a data set. Four robust estimators such as MVE, MCD, S and SD have been also used to identify outlier data. and finally the results of the four estimator has been evaluated and compared with each other by PCA in Q mode. Results and Conclusions From 146 samples, the MVE, MCD, S and SD robust estimators detected 23, 35, 20 and 34 as outlier data, respectively. Outlier samples also show up themselves with the negative loads on the PC2 and other samples with positive loads on the PC1. The population of the Outlier samples and the population of another samples are separated in the scatter plot of the PC2 loads vs the PC3 loads. So depending on the number of samples, one of these estimators can be used to identify outlier data.
عنوان نشريه :
روش هاي تحليلي و عددي در مهندسي معدن
عنوان نشريه :
روش هاي تحليلي و عددي در مهندسي معدن