Title of article :
Matrix cracking in polymeric composites laminates: Modelling and experiments
Author/Authors :
D.T.G. Katerelos، نويسنده , , M. Kashtalyan، نويسنده , , C. Soutis ، نويسنده , , J. Varna and C. Galiotis ، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2008
Pages :
8
From page :
2310
To page :
2317
Abstract :
Composites ability to retain functionality in the presence of damage is a crucial safety and economic issue. Generally the first damage mode in composite laminates is matrix cracking, which affects the mechanical properties of the structure long before its load-bearing capacity is exhausted. In this paper, a detailed analysis of the effect of matrix cracking on the behaviour of cross-ply [0/90]s and unbalanced symmetric [0/45]s glass/epoxy laminates loaded statically in tension is performed. Theoretical predictions of stiffness reduction due to damage are based on the Equivalent Constraint Model (ECM), which takes into account concurrent matrix cracking in all plies of the laminate, although matrix cracking under consideration is developing only within the off-axis ply of the laminates. The longitudinal Young’s modulus predictions are compared to experimentally derived data obtained using laser Raman spectroscopy (LRS). The good agreement between predicted and measured values of the reduced longitudinal Young’s modulus validates the ECM model and proves that its basic assumptions are accurate. Thus, the predictions for all the mechanical properties by the ECM model are within a realistic range, while experimental evidence is required for further validation.
Keywords :
A. Polymer–matrix composites (PMCs) , C. Damage mechanics , D. Raman spectroscopy , B. Matrix cracking , C. Transverse cracking
Journal title :
COMPOSITES SCIENCE AND TECHNOLOGY
Serial Year :
2008
Journal title :
COMPOSITES SCIENCE AND TECHNOLOGY
Record number :
1042992
Link To Document :
بازگشت