Title of article :
Silicon based light emitters utilizing radiation from dislocations; electric field induced shift of the dislocation-related luminescence
Author/Authors :
T. Arguirov، نويسنده , , T. Mchedlidze، نويسنده , , M. Kittler، نويسنده , , M. Reiche، نويسنده , , T. Wilhelm، نويسنده , , T. Hoang، نويسنده , , J. Holleman، نويسنده , , J. Schmitz، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2008
Abstract :
Dislocation rich regions can be controllably formed at a certain location inside a silicon wafer. We studied the light emission properties of such regions located in an electric field of a p–n junction under different excitation conditions. It was found that the luminescence spectra of the dislocations are significantly influenced by the presence of the junction. The dislocation-related luminescence peak position appears red-shifted due to the built-in electric field. A suppression of that field by photo-generation of carriers or by applying a forward bias voltage at the junction leads to a gradual decrease in the energy position of the peaks. The dependence of the peak position on the electric field was found to be a quadratic function, similar to that observed for semiconductor nanostructures. We show that the shift of the peak position is due to the Stark effect on dislocation-related excitonic states. The characteristic constant of the shift, obtained by fitting the data with the quadratic Stark effect equation, was 0.0186 meV/(kV/cm)2.The observed effect opens new possibilities for integration of a silicon based light emitter, combining the radiation from dislocations with a Stark effect based modulator.
Keywords :
Silicon , Light emitter , Stark effect , Dislocations
Journal title :
Physica E Low-dimensional Systems and Nanostructures
Journal title :
Physica E Low-dimensional Systems and Nanostructures