Abstract :
A phenomenological description of the evolution of real contact area in metal forming processes is presented with account for the effect of bulk plastic flow. A thin surface layer is considered and assumed to be weakened by the localized plastic deformation around surface asperities. The yield condition of this layer is expressed in terms of contact stresses, plastic strain rate of the bulk and real contact area fraction and its rate. The model applicability is illustrated by comparing its predictions of real contact area variation, depending on bulk strain, with predictions of micro-mechanical models and with experimental data.