• Title of article

    Inverse optimization for linearly constrained convex separable programming problems

  • Author/Authors

    Jianzhong Zhang، نويسنده , , Chengxian Xu، نويسنده ,

  • Issue Information
    روزنامه با شماره پیاپی سال 2010
  • Pages
    9
  • From page
    671
  • To page
    679
  • Abstract
    In this paper, we study inverse optimization for linearly constrained convex separable programming problems that have wide applications in industrial and managerial areas. For a given feasible point of a convex separable program, the inverse optimization is to determine whether the feasible point can be made optimal by adjusting the parameter values in the problem, and when the answer is positive, find the parameter values that have the smallest adjustments. A sufficient and necessary condition is given for a feasible point to be able to become optimal by adjusting parameter values. Inverse optimization formulations are presented with ℓ1ℓ1 and ℓ2ℓ2 norms. These inverse optimization problems are either linear programming when ℓ1ℓ1 norm is used in the formulation, or convex quadratic separable programming when ℓ2ℓ2 norm is used.
  • Keywords
    KKT conditions , Quadratic programming , Inverse optimization , Convex separable program , Linear programming
  • Journal title
    European Journal of Operational Research
  • Serial Year
    2010
  • Journal title
    European Journal of Operational Research
  • Record number

    1312349