Title of article :
Fatty oil hydrogenation in supercritical solvents: Process design and safety issues
Author/Authors :
Ramيrez، نويسنده , , E. and Mayorga، نويسنده , , M.J. and Cuevas، نويسنده , , D. and Recasens، نويسنده , , F.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2011
Pages :
12
From page :
143
To page :
154
Abstract :
A simulation study of a SCF process is carried out using Aspen™ with previously available catalytic kinetics for the simulation of the reactor. Two supported catalysts were considered: a standard Pd/carbon, and an egg-shell Pd/alumina, in a vapour-phase process that uses propane as solvent. Best reactor–catalyst combination was selected using optimization. Optimal reactor–catalyst conditions were: Pd (0.5 wt%) on alumina catalyst in tubes, shell cooling, inlet temperature 170 °C, space-time 100 s, 4 mol% of H2 in the feed, oil feed 1 mol%, propane 95 mol%, with pressure up to 20 MPa. Three SC solvents, were considered in the simulation. These were (i) SC propane, (ii) a cosolvent case with hexane-modified CO2, and (iii) a case with pure liquid hexane. In plant simulation, three recycle streams (H2, CO2 and cosolvent) complicate the separations. In order to assess the safety differences between these options, a study was done using the Dow Fire and Explosion Index to roughly figure out process safety. It is shown that plant complexity increases with cosolvent use, but the hazard index is sensibly reduced, from F&EI = 150 (pure propane) to a low value (F&EI = 60) for a plant with CO2 with 40 mol% of hexane as cosolvent.
Keywords :
cosolvent , Supercritical solvent , Dow Fire and Explosion Index , Process simulation , Heterogeneous catalyst , Hydrogenation , hazards
Journal title :
Journal of Supercritical Fluids
Serial Year :
2011
Journal title :
Journal of Supercritical Fluids
Record number :
1423460
Link To Document :
بازگشت