Title of article :
On the Carathéodory Number for the Convexity of Paths of Order Three
Author/Authors :
Barbosa، نويسنده , , Rommel M. and Coelho، نويسنده , , Erika M.M. and Dourado، نويسنده , , Mitre C. and Rautenbach، نويسنده , , Dieter and Szwarcfiter، نويسنده , , Jayme L.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2011
Pages :
6
From page :
105
To page :
110
Abstract :
Let G be a finite, simple, and undirected graph and let S be a set of vertices of G. If no vertex of G that does not belong to S has two neighbours in S, then S is P 3 -convex. The P 3 -convex hull H G ( S ) of S is the smallest P 3 -convex set containing S. The P 3 -Carathéodory number of G is the smallest integer c such that for every set S and every vertex u in H G ( S ) , there is a set F ⊆ S with | F | ⩽ c and u ∈ H G ( F ) . dy structural and algorithmic aspects of the P 3 -Carathéodory number. We characterize the P 3 -Carathéodory number of trees and block graphs, establish upper bounds on the P 3 -Carathéodory number of general graphs and of claw-free graphs and prove that it is NP-complete to decide for a given bipartite graph G and a given integer k, whether the P 3 -Carathéodory number of G is at least k.
Keywords :
Convexity space , geodetic convexity , graph , monophonic convexity , Carathéodory number , P 3 convexity
Journal title :
Electronic Notes in Discrete Mathematics
Serial Year :
2011
Journal title :
Electronic Notes in Discrete Mathematics
Record number :
1455776
Link To Document :
بازگشت