Title of article :
Multi-component generalizations of the Hirota–Satsuma coupled KdV equation
Author/Authors :
Chen، نويسنده , , Junchao and Chen، نويسنده , , Yong and Feng، نويسنده , , Bao-Feng and Zhu، نويسنده , , Hanmin، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2014
Pages :
7
From page :
15
To page :
21
Abstract :
In this paper, we consider multi-component generalizations of the Hirota–Satsuma coupled Korteweg–de Vries (KdV) equation. By introducing a Lax pair, we present a matrix generalization of the Hirota–Satsuma coupled KdV equation, which is shown to be reduced to a vector Hirota–Satsuma coupled KdV equation. By using Hirota’s bilinear method, we find a few soliton solutions to the vector Hirota–Satsuma coupled KdV equation in a symmetric case. Finally, in this symmetric case, we give a multi-soliton solution expressed by pfaffians and prove it by pfaffian techniques.
Keywords :
Multi-soliton solution , Multi-component generalizations , Hirota–Satsuma coupled KdV equation , Lax pair , Pfaffian
Journal title :
Applied Mathematics Letters
Serial Year :
2014
Journal title :
Applied Mathematics Letters
Record number :
1529375
Link To Document :
بازگشت