Title of article :
Ehrhart polynomials of cyclic polytopes
Author/Authors :
Liu، نويسنده , , Fu، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2005
Pages :
17
From page :
111
To page :
127
Abstract :
The Ehrhart polynomial of an integral convex polytope counts the number of lattice points in dilates of the polytope. In (Coefficients and roots of Ehrhart polynomials, preprint), the authors conjectured that for any cyclic polytope with integral parameters, the Ehrhart polynomial of it is equal to its volume plus the Ehrhart polynomial of its lower envelope and proved the case when the dimension d = 2 . In our article, we prove the conjecture for any dimension.
Keywords :
Cyclic polytopes , Ehrhart polynomial
Journal title :
Journal of Combinatorial Theory Series A
Serial Year :
2005
Journal title :
Journal of Combinatorial Theory Series A
Record number :
1530993
Link To Document :
بازگشت