Title of article :
Density of first Poincaré returns, periodic orbits, and Kolmogorov–Sinai entropy
Author/Authors :
Pinto، نويسنده , , Paulo R.F. and Baptista، نويسنده , , M.S. and Labouriau، نويسنده , , Isabel S.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2011
Abstract :
It is known that unstable periodic orbits of a given map give information about the natural measure of a chaotic attractor. In this work we show how these orbits can be used to calculate the density function of the first Poincaré returns. The close relation between periodic orbits and the Poincaré returns allows for estimates of relevant quantities in dynamical systems, as the Kolmogorov–Sinai entropy, in terms of this density function. Since return times can be trivially observed and measured, our approach to calculate this entropy is highly oriented to the treatment of experimental systems. We also develop a method for the numerical computation of unstable periodic orbits.
Keywords :
Time returns , periodic orbits , Kolmogorov entropy , Lyapunov exponents
Journal title :
Communications in Nonlinear Science and Numerical Simulation
Journal title :
Communications in Nonlinear Science and Numerical Simulation