Title of article :
Gelfʹand Inverse Problem for a Quadratic Operator Pencil
Author/Authors :
Kurylev، نويسنده , , Yaroslav and Lassas، نويسنده , , Matti، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2000
Pages :
17
From page :
247
To page :
263
Abstract :
In this paper we consider the inverse boundary value problem for the operator pencil A(λ)=a(x, D)−iλb0(x)−λ2 where a(x, D) is an elliptic second-order operator on a differentiable manifold M with boundary. The manifold M can be interpreted as a Riemannian manifold (M, g) where g is the metric generated by a(x, D). We assume that the Gelʹfand data on the boundary is given; i.e., we know the boundary ∂M and the boundary values of the fundamental solution of A(λ), namely, Rλ(x, y), x, y∈∂M, λ∈C. We show that if (M, g) satisfies some geometric condition then the Gelʹfand data determine the manifold M, the metric g, the coefficient b0(x) uniquely and also the equivalence class of a(x, D) with respect to the group of generalized gauge transformations.
Journal title :
Journal of Functional Analysis
Serial Year :
2000
Journal title :
Journal of Functional Analysis
Record number :
1550039
Link To Document :
بازگشت