Title of article :
Gaussian quadrature formulae on the unit circle
Author/Authors :
Daruis، نويسنده , , Leyla and Gonzلlez-Vera، نويسنده , , Pablo and Marcellلn، نويسنده , , Francisco، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2002
Pages :
25
From page :
159
To page :
183
Abstract :
Let μ be a probability measure on [0,2π]. In this paper we shall be concerned with the estimation of integrals of the form Iμ(f)=(1/2π)∫02πf(eiθ) dμ(θ). For this purpose we will construct quadrature formulae which are exact in a certain linear subspace of Laurent polynomials. The zeros of Szegö polynomials are chosen as nodes of the corresponding quadratures. We will study this quadrature formula in terms of error expressions and convergence, as well as, its relation with certain two-point Padé approximants for the Herglotz–Riesz transform of μ. Furthermore, a comparison with the so-called Szegö quadrature formulae is presented through some illustrative numerical examples.
Keywords :
Laurent polynomials , quadrature formula , Rate of convergence , Two-point Padé approximants , Positive measure
Journal title :
Journal of Computational and Applied Mathematics
Serial Year :
2002
Journal title :
Journal of Computational and Applied Mathematics
Record number :
1551671
Link To Document :
بازگشت