Title of article :
Using a Bootstrap Method to Choose the Sample Fraction in Tail Index Estimation
Author/Authors :
Danielsson، نويسنده , , J. and de Haan، نويسنده , , L. and Peng، نويسنده , , L. and de Vries، نويسنده , , C.G.، نويسنده ,
Issue Information :
دوفصلنامه با شماره پیاپی سال 2001
Abstract :
Tail index estimation depends for its accuracy on a precise choice of the sample fraction, i.e., the number of extreme order statistics on which the estimation is based. A complete solution to the sample fraction selection is given by means of a two-step subsample bootstrap method. This method adaptively determines the sample fraction that minimizes the asymptotic mean-squared error. Unlike previous methods, prior knowledge of the second-order parameter is not required. In addition, we are able to dispense with the need for a prior estimate of the tail index which already converges roughly at the optimal rate. The only arbitrary choice of parameters is the number of Monte Carlo replications.
Keywords :
Tail index , Bootstrap , Bias , Mean squared error , optimal extreme sample fraction
Journal title :
Journal of Multivariate Analysis
Journal title :
Journal of Multivariate Analysis