Title of article :
Schauder decompositions and the Fremlin projective tensor product of Banach lattices
Author/Authors :
Bu، نويسنده , , Qingying and Buskes، نويسنده , , Gerard، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2009
Pages :
17
From page :
335
To page :
351
Abstract :
In this paper, we first introduce a lattice decomposition and finite-dimensional lattice decomposition (FDLD) for Banach lattices. Then we show that for a Banach lattice with FDLD, the following are equivalent: (i) it has the Radon–Nikodym property; (ii) it is a KB-space; (iii) it is a Levi space; and (iv) it is a σ-Levi space. We then give a sequential representation of the Fremlin projective tensor product of an atomic Banach lattice with a Banach lattice. Using this sequential representation, we show that if one of the Banach lattices X and Y is atomic, then the Fremlin projective tensor product X ⊗ ˆ F Y has the Radon–Nikodym property (or, respectively, is a KB-space) if and only if both X and Y have the Radon–Nikodym property (or, respectively, are KB-spaces).
Keywords :
Projective tensor product , Schauder decomposition , Radon–Nikodym property , Banach lattice
Journal title :
Journal of Mathematical Analysis and Applications
Serial Year :
2009
Journal title :
Journal of Mathematical Analysis and Applications
Record number :
1560225
Link To Document :
بازگشت