Title of article :
Weak statistical convergence and weak filter convergence for unbounded sequences
Author/Authors :
Kadets، نويسنده , , Vladimir and Leonov، نويسنده , , Alexander and Orhan، نويسنده , , Cihan، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2010
Abstract :
For every weakly statistically convergent sequence ( x n ) with increasing norms in a Hilbert space we prove that sup n ‖ x n ‖ / n < ∞ . This estimate is sharp. We study analogous problem for some other types of weak filter convergence, in particular for the Erdös–Ulam filters, analytical P-filters and F σ filters. We present also a refinement of the recent Aron–Garcia–Maestre result on weakly dense sequences that tend to infinity in norm.
Keywords :
Filter , Statistical convergence , Banach space , Weak topology
Journal title :
Journal of Mathematical Analysis and Applications
Journal title :
Journal of Mathematical Analysis and Applications