Title of article :
Supremal p-negative type of vertex transitive graphs
Author/Authors :
Murugan، نويسنده , , Mathav Kishore، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2012
Abstract :
We study the supremal p-negative type of connected vertex transitive graphs. The analysis provides a way to characterize subsets of the Hamming cube { 0 , 1 } n ⊂ ℓ 1 ( n ) ( n ⩾ 1 ) that have strict 1-negative type. The result can be stated in two ways: A subset S = { x 0 , x 1 , … , x k } of the Hamming cube { 0 , 1 } n ⊂ ℓ 1 ( n ) has generalized roundness one if and only if the vectors { x 1 − x 0 , x 2 − x 0 , … , x k − x 0 } are linearly dependent in R n . Equivalently, S has strict 1-negative type if and only if the vectors { x 1 − x 0 , x 2 − x 0 , … , x k − x 0 } are linearly independent in R n .
Keywords :
Generalized roundness , Hamming cube , p-Negative type
Journal title :
Journal of Mathematical Analysis and Applications
Journal title :
Journal of Mathematical Analysis and Applications