Title of article :
Empirical likelihood for a varying coefficient partially linear model with diverging number of parameters
Author/Authors :
Li، نويسنده , , Gaorong and Lin، نويسنده , , Lu-Ping Zhu ، نويسنده , , Lixing، نويسنده ,
Issue Information :
دوفصلنامه با شماره پیاپی سال 2012
Pages :
27
From page :
85
To page :
111
Abstract :
The purpose of this paper is two-fold. First, for the estimation or inference about the parameters of interest in semiparametric models, the commonly used plug-in estimation for infinite-dimensional nuisance parameter creates non-negligible bias, and the least favorable curve or under-smoothing is popularly employed for bias reduction in the literature. To avoid such strong structure assumptions on the models and inconvenience of estimation implementation, for the diverging number of parameters in a varying coefficient partially linear model, we adopt a bias-corrected empirical likelihood (BCEL) in this paper. This method results in the distribution of the empirical likelihood ratio to be asymptotically tractable. It can then be directly applied to construct confidence region for the parameters of interest. Second, different from all existing methods that impose strong conditions to ensure consistency of estimation when diverging the number of the parameters goes to infinity as the sample size goes to infinity, we provide techniques to show that, other than the usual regularity conditions, the consistency holds under moment conditions alone on the covariates and error with a diverging rate being even faster than those in the literature. A simulation study is carried out to assess the performance of the proposed method and to compare it with the profile least squares method. A real dataset is analyzed for illustration.
Keywords :
Varying coefficient partially linear model , Empirical likelihood , Bias correction , Curse of dimensionality , Asymptotic normality
Journal title :
Journal of Multivariate Analysis
Serial Year :
2012
Journal title :
Journal of Multivariate Analysis
Record number :
1565668
Link To Document :
بازگشت