Title of article :
Variable selection in robust regression models for longitudinal data
Author/Authors :
Fan، نويسنده , , Yali and Qin، نويسنده , , Guoyou and Zhu، نويسنده , , Zhongyi، نويسنده ,
Issue Information :
دوفصلنامه با شماره پیاپی سال 2012
Pages :
12
From page :
156
To page :
167
Abstract :
In this article, we consider variable selection in robust regression models for longitudinal data. We propose a penalized robust estimating equation to estimate the regression parameters and to select the important covariate variables simultaneously. Under some regularity conditions, we show the oracle properties of the proposed robust variable selection methods. A simulation study shows the robustness of the proposed methods against outliers. Moreover, it is found by the simulation study that incorporating the correlation structure into the procedure of variable selection will lead to better performance than ignoring the correlation structure for longitudinal data. In the end, the proposed methods are illustrated in the analysis of a real data set.
Keywords :
Longitudinal data , Penalized estimating equation , variable selection , Robust method
Journal title :
Journal of Multivariate Analysis
Serial Year :
2012
Journal title :
Journal of Multivariate Analysis
Record number :
1565813
Link To Document :
بازگشت