Title of article :
Minimax rates of convergence for Wasserstein deconvolution with supersmooth errors in any dimension
Author/Authors :
Dedecker، نويسنده , , Jérôme and Michel، نويسنده , , Bertrand، نويسنده ,
Issue Information :
دوفصلنامه با شماره پیاپی سال 2013
Pages :
14
From page :
278
To page :
291
Abstract :
The subject of this paper is the estimation of a probability measure on R d from the data observed with an additive noise, under the Wasserstein metric of order p (with p ≥ 1 ). We assume that the distribution of the errors is known and belongs to a class of supersmooth distributions, and we give optimal rates of convergence for the Wasserstein metric of order p . In particular, we show how to use the existing lower bounds for the estimation of the cumulative distribution function in dimension one to find lower bounds for the Wasserstein deconvolution in any dimension.
Keywords :
Deconvolution , Supersmooth distributions , Minimax rates , Wasserstein metrics
Journal title :
Journal of Multivariate Analysis
Serial Year :
2013
Journal title :
Journal of Multivariate Analysis
Record number :
1566478
Link To Document :
بازگشت