Title of article :
Martingale decomposition of Dirichlet processes on the Banach space C0[0, 1]
Author/Authors :
Lyons، نويسنده , , T.J. and Rِckner، نويسنده , , M. and Zhang، نويسنده , , T.S.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 1996
Pages :
8
From page :
31
To page :
38
Abstract :
We prove that for a given symmetric Dirichlet form of type g(u, v) = ∫E〈A(z)∇u(z), ∇v(z)〉hμ(dz) with E = C0[0, 1] and H = classical Cameron-Martin space the corresponding diffusion process (under Pμ) can be decomposed into a forward and a backward E-valued martingale. The construction of the martingale is direct and explicit since it is based on a modification of Levyʹs construction of Brownian motion. Applications to prove tightness of laws of diffusions of the above kind are given.
Keywords :
Dirichlet processes , Martingale decomposition , Diffusions on Banach spaces , Dirichlet forms
Journal title :
Stochastic Processes and their Applications
Serial Year :
1996
Journal title :
Stochastic Processes and their Applications
Record number :
1575936
Link To Document :
بازگشت