Author/Authors :
Lee، نويسنده , , Sungchul، نويسنده ,
Abstract :
Let {Xi: i⩾1} be i.i.d. uniform points on [−1/2,1/2]d, d⩾2, and for 0<p<∞. Let L({X1,…,Xn},p) be the total weight of the minimal spanning tree on {X1,…,Xn} with weight function w(e)=|e|p. Then, there exist strictly positive but finite constants β(d,p), C3=C3(d,p), and C4=C4(d,p) such that for large n, C3n−1/d⩽EL({X1,…,Xn},p)/n(d−p)/d−β(d,p)⩽C4n−1/d.
Keywords :
Rate of convergence , Boundary rooted dual , Minimal spanning tree , Stabilization