Title of article :
Notes on non-archimedean topological groups
Author/Authors :
Megrelishvili، نويسنده , , Michael and Shlossberg، نويسنده , , Menachem، نويسنده ,
Issue Information :
دوماهنامه با شماره پیاپی سال 2012
Pages :
9
From page :
2497
To page :
2505
Abstract :
We show that the Heisenberg type group H X = ( Z 2 ⊕ V ) ⋋ V ⁎ , with the discrete Boolean group V : = C ( X , Z 2 ) , canonically defined by any Stone space X, is always minimal. That is, H X does not admit any strictly coarser Hausdorff group topology. This leads us to the following result: for every (locally compact) non-archimedean G there exists a (resp., locally compact) non-archimedean minimal group M such that G is a group retract of M. For discrete groups G the latter was proved by S. Dierolf and U. Schwanengel (1979) [6]. We unify some old and new characterization results for non-archimedean groups.
Keywords :
Boolean group , Isosceles , Minimal group , Non-archimedean group , Stone space , Stone duality , Ultra-metric , Heisenberg group
Journal title :
Topology and its Applications
Serial Year :
2012
Journal title :
Topology and its Applications
Record number :
1583426
Link To Document :
بازگشت