Title of article :
The ultrahyperbolic Bessel operator: An inversion theorem
Author/Authors :
Cerutti، نويسنده , , R.A.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 1995
Pages :
11
From page :
107
To page :
117
Abstract :
In this note, we prove that the two following conclusions are equivalent: for ƒ and ϑ temperate distributions, ƒ = Bαϑ and ϑ = limϵ→0Dϵα ƒ (cf., Theorem 3.3, formulas (3.17) and (3.18)). Here, Dϵαƒ is the truncated Bessel derivative of order α and Bαϑ is the ultrahyperbolic Bessel operator defined by formulas (1.15) and (1.16), respectively. Here, we generalize an article due to B.S. Rubin (cf., [1]).
Keywords :
Distribution theory , Potential theory , singular integrals , Ultrahyperbolic operator
Journal title :
Mathematical and Computer Modelling
Serial Year :
1995
Journal title :
Mathematical and Computer Modelling
Record number :
1590203
Link To Document :
بازگشت