Title of article :
-labelings of Hamming graphs
Author/Authors :
Huang، نويسنده , , Lian-Hwao and Chang، نويسنده , , Gerard J.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2009
Pages :
5
From page :
2197
To page :
2201
Abstract :
Given integers c ≥ 0 and h ≥ k ≥ 1 , a c - L ( h , k ) -labeling of a graph G is a mapping f : V ( G ) → { 0 , 1 , 2 , … , c } such that | f ( u ) − f ( v ) | ≥ h if d G ( u , v ) = 1 and | f ( u ) − f ( v ) | ≥ k if d G ( u , v ) = 2 . The L ( h , k ) -number λ h , k ( G ) of G is the minimum c such that G has a c - L ( h , k ) -labeling. The Hamming graph is the Cartesian product of complete graphs. In this paper, we study L ( h , k ) -labeling numbers of Hamming graphs. In particular, we determine λ h , k ( K n q ) for 2 ≤ q ≤ p with h / k ≤ n − q + 1 or 2 ≤ q ≤ p with h / k ≥ q n − 2 q + 2 or q = p + 1 with h / k ≤ n / p , where p is the minimum prime factor of n .
Keywords :
L ( h , k ) -labeling , k ) -number , Hamming graph , Cartesian Product , Complete Graph , L ( h
Journal title :
Discrete Mathematics
Serial Year :
2009
Journal title :
Discrete Mathematics
Record number :
1598689
Link To Document :
بازگشت