Title of article :
A bound on the values of independence polynomials at for -degenerate graphs
Author/Authors :
Estes، نويسنده , , John and Staton، نويسنده , , William and Wei، نويسنده , , Bing، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2013
Pages :
6
From page :
1793
To page :
1798
Abstract :
An independent set of a graph G is a set of pairwise non-adjacent vertices. Let α ( G ) denote the cardinality of a maximum independent set and f s ( G ) for 0 ≤ s ≤ α ( G ) denote the number of independent sets on s vertices. The independence polynomial I ( G ; x ) = ∑ i = 0 α ( G ) f s ( G ) x s defined first by Gutman and Harary in 1983 has been the focus of considerable research. In 1995, Wingard bounded the function values obtained at − 1 for the independence polynomials for the tree T ; | I ( T ; − 1 ) | ≤ 1 . We generalize Wingard’s result for a much larger class of graphs, k -degenerate graphs, a class which includes all k -trees. Wingard’s result is the case when k = 1 .
Keywords :
Fibonacci number of a graph , Independence polynomials , k -trees , k -degenerate graphs
Journal title :
Discrete Mathematics
Serial Year :
2013
Journal title :
Discrete Mathematics
Record number :
1600396
Link To Document :
بازگشت