Title of article :
Applying support vector machine to predict hourly cooling load in the building
Author/Authors :
Li، نويسنده , , Qiong and Meng، نويسنده , , Qinglin and Cai، نويسنده , , Jiejin and Yoshino، نويسنده , , Hiroshi and Mochida، نويسنده , , Akashi، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2009
Abstract :
In this paper, support vector machine (SVM) is used to predict hourly building cooling load. The hourly building cooling load prediction model based on SVM has been established, and applied to an office building in Guangzhou, China. The simulation results demonstrate that the SVM method can achieve better accuracy and generalization than the traditional back-propagation (BP) neural network model, and it is effective for building cooling load prediction.
Keywords :
Prediction , Cooling load , Artificial neural network , Building , Support vector machine
Journal title :
Applied Energy
Journal title :
Applied Energy