Title of article :
Synthesis of hollow polymer microspheres with movable polyelectrolyte core and functional groups on the shell-layer
Author/Authors :
Ji، نويسنده , , Min and Liu، نويسنده , , Bin and Yang، نويسنده , , Xinlin and Wang، نويسنده , , Junyou، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2009
Pages :
10
From page :
5970
To page :
5979
Abstract :
Hollow polymer microspheres with movable quaternary pyridinium polyelectrolyte (PE) cores and various functional groups on the shell-layers, such as hydroxyl, amide, and carboxyl, were prepared by the selectively etching of mid-silica layer with hydrofluoric acid from the corresponding poly(ethyleneglycol dimethacrylate-co-methacrylic acid)@poly(ethyleneglycol dimethacrylate- co-4-vinylpyridinium benzylchloride)/silica/polymer (P(EGDMA-co-MAA) @P(EGDMA-co-VPyBzCl)/SiO2/polymer) tetra-layer microspheres. The tetra-layer hybrid microspheres were synthesized by a multi-stage reaction process, which included the combination of distillation precipitation polymerization for the formation of polymer-layers and the hydrolysis of tetraethyl orthosilicate (TEOS) via a modified Stöber sol–gel procedure to afford silica layer. The efficient electrostatic interaction between the cationic pyridinium species on the surface of P(EGDMA-co-MAA)@P(EGDMA-co-VPyBzCl) cores and the negative charges on the silica species was essential to get monodisperse tri-layer P(EGDMA-co-MAA)@P(EGDMA-co-VPyBzCl)/SiO2 microspheres during the hydrolysis of TEOS. The functional polymer shell was encapsulated over 3-(methacryloxy)propyl trimethacrylate (MPS) modified tri-layer polymer/silica seeds by distillation precipitation copolymerizations of N,N′-methylenebisacrylamide (MBAAm) crosslinker and comonomers with different functional groups, including N-isopropylacrylamide (NIPAAm), 2-hydroxyethylmethacrylate (HEMA) and methacrylic acid (MAA), with 2,2′-azobisisobutyronitrile (AIBN) as an initiator in neat acetonitrile. The morphology and structure of the tetra-layer hybrid microspheres and the corresponding hollow microspheres with movable PE core and functional polymer shell-layer were characterized by transmission electron microscopy (TEM), Fourier-transform infrared spectroscopy (FT-IR), ξ-potential, and dynamic light scattering (DLS).
Keywords :
Hollow polymer microspheres , Distillation precipitation polymerization , Movable polyelectrolyte core
Journal title :
Polymer
Serial Year :
2009
Journal title :
Polymer
Record number :
1733828
Link To Document :
بازگشت