Abstract :
Calculations of the thermal expansion coefficient and magnetic field susceptibility jumps at second-order diamagnetic phase transitions are performed. The temperature and size dependence of the susceptibility, of the thermal expansion coefficient and of the sound velocity is presented near the diamagnetic phase transition. The compressibility growth observed in beryllium and occurring as a result of the Condon domain formation confirms indirectly the presence of a thermal expansion jump at the phase transition point. A possibility of a first-order diamagnetic phase transition occurrence is considered as a result of the magneto-elastic coupling.