Abstract :
Atomistic models of quasi-one-dimensional vanadium pentoxide nanostructures—single-walled nanotubes formed by rolling (010) layers of V2O5 are constructed and their electronic properties and bond indices are studied using the tight-binding band method. We show that all zigzag (n,0)- and armchair (n,n)-like nanotubes are uniformly semiconducting, and the band gap trends to vanish as the tube diameters decrease. The V–O covalent bonds were found to be the strongest interactions in V2O5 tubes, whereas V–V bonds proved to be much weaker.