Abstract :
Material designs based on the first principle calculations of electronic structures are proposed for α-quartz SiO2-based dilute magnetic semiconductors. The incorporation of transition metals (TMs) into Si sites and of the non-TM atoms into O sites are treated for various concentrations. At temperatures higher than room temperature, most of the TM-doped SiO2 have no magnetism, yet Si1−xMnxO2 might achieve the ferromagnetism. The substitution of O by non-TM atoms as C or N also induces the magnetism in the host. However, while the Nʹs substitution induces the ferromagnetism, Cʹs substitution causes an anti-ferromagnetic behavior in the host material SiO2.