Abstract :
With the vibrating-reed technique, the internal friction (IF) Q−1 is measured for sing-phase (Hg0.66Pb0.34)Ba2Ca2Cu3O8+x superconductor as a function of temperature at low applied magnetic field up to 0.5 T and as a function of frequency at normal state temperatures. An IF peak associated with flux motion can be found below TC. The IF peak becomes higher and shifts towards lower temperature with increasing magnetic field. In addition an IF peak is found near 200 K. By scaling analysis we have demonstrated that the internal friction around the peak temperature can be collapsed into a single curve, indicating that the IF peak below TC is originated from a phase transition associated with a vortex glass transition and a structural phase transition occurs at around 200 K in the superconductor.