Abstract :
Single-crystalline bismuth nanowire arrays with different diameters were fabricated within porous anodic alumina membranes with the same pore size using the pulsed electro-deposition technique. X-ray diffraction measurements show that the as-synthesized nanowires have a highly preferential orientation. Scanning electron microscopy, transmission electron microscopy and high-resolution transmission electron microscopy analyses indicate that bismuth nanowire arrays are high filling, ordered and single-crystalline. Electrical resistance measurements show that the bismuth nanowires have a metal–semiconductor transition when the diameters decrease from 90 to 50 nm, and the resistance behaviors are explained on the basis of the quantum confinement effect and Matthiessen’s rule.