Abstract :
We solve a self-consistent equation for the d-wave superconducting gap and the magnetization in the mean-field approximation, study the Zeeman effects on the thermodynamic potential of d-wave superconductor (S) and coherent quantum transport in normal-metal (N)/d-wave S/N double tunnel junctions. Taking simultaneously into account the electron-injected current from one N electrode and the hole-injected current from the other N electrode, we derive a general formula for the differential conductance in a N/d-wave S/N system under a Zeeman magnetic field on the d-wave S. It is found that oscillations of all quasiparticle transport coefficients and differential conductance with the bias voltage and the thickness of the d-wave S depend to a great extent on the crystal orientation of the d-wave S. In the N/d-wave S/N junctions, the Zeeman magnetic field can lead to the Zeeman splitting of conductance peaks, and the temperature can reduce the coherent effect.