Issue Information :
روزنامه با شماره پیاپی سال 2011
Pages :
5
From page :
203
To page :
207
Abstract :
Using density functional theory formulated within the framework of the exact muffin-tin orbitals method, we investigate the thermo-physical properties of body-centered cubic (bcc) iron–magnesium alloys, containing 5 and 10 atomic % Mg, under extreme conditions, at high pressure and high temperature. The temperature effect is taken into account via the Fermi–Dirac distribution of the electrons. We find that at high pressures pure bcc iron is dynamically unstable at any temperature, having a negative tetragonal shear modulus ( C ′ ). Magnesium alloying significantly increases C ′ of Fe, and bcc Fe–Mg alloys become dynamically stable at high temperature. The electronic structure origin of the stabilization effect of Mg is discussed in detail. We show that the thermo-physical properties of a bcc Fe–Mg alloy with 5% Mg agree well with those of the Earth’s inner core as provided by seismic observations.
Journal title :
Acta Tropica
Serial Year :
2011
Journal title :
Acta Tropica
Record number :
1750203
Link To Document :
بازگشت