Abstract :
Dielectric control of the topology of an exciton wavefunction is proposed and investigated theoretically. As we have shown in a previous paper, we can change the topology of an exciton wavefunction in a nanotube structure by controlling the length and radius of the nanotube. This nature yields a new device which utilizes the topology of an exciton wavefunction, however, its control via the structural parameters does not suit it to device applications. We found that the in-situ control can be achieved by changing the ambient dielectric constants of the nanotube structure and we calculated the transition condition of the topology of an exciton wavefunction.