Abstract :
The density-functional theory (DFT) within the full potential linearized augmented plane wave (FPLAPW) method is applied to study the two-dimensional achiral soft ferrimagnet [MnII(enH)(H2O)][CrIII(CN)6]·H2O. The phase stability, electronic structure, magnetic and conducting properties are investigated. Our results reveal that the compound has a stable ferrimagnetic ground state in good agreement with the experiment. From the spin density distribution, the spin magnetic moment of the compound is mainly from Cr3+ and Mn2+ ions with small contributions from the oxygen, nitrogen and carbon ions. The calculated electronic band structure predicts the compound to be a half-metal with the spin magnetic moment of 1.000 μB per molecule.