Title of article :
Subject-specific changes in brain white matter on diffusion tensor imaging after sports-related concussion
Author/Authors :
Bazarian، نويسنده , , Jeffrey J. and Zhu، نويسنده , , Tong and Blyth، نويسنده , , Brian and Borrino، نويسنده , , Allyson and Zhong، نويسنده , , Jianhui، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2012
Abstract :
Background and Purpose
t approaches to diffusion tensor imaging (DTI) analysis do not permit identification of individual-level changes in DTI indices. We investigated the ability of wild bootstrapping analysis to detect subject-specific changes in brain white matter (WM) before and after sports-related concussion.
als and Methods
pective cohort study was performed in nine high school athletes engaged in hockey or football and six controls. Subjects underwent DTI pre- and postseason within a 3-month interval. One athlete was diagnosed with concussion (scanned within 72 h), and eight suffered between 26 and 399 subconcussive head blows. Fractional anisotropy (FA) and mean diffusivity (MD) were measured in each WM voxel. Bootstrap samples were generated, and a permuted t test was used to compare voxel-wise FA/MD changes in each subject pre- vs. postseason.
s
rcentage of WM voxels with significant (p<.05) pre–post FA changes was highest for the concussion subject (3.2%), intermediary for those with subconcussive head blows (mean 1.05%±.15%) and lowest for controls (mean 0.28%±.01%). Similarly, the percentage of WM voxels with significant MD changes was highest for the concussion subject (3.44%), intermediary for those with subconcussive head blows (mean 1.48%±.17%) and lowest for controls (mean 0.48%±.05%). Significantly changed FA and MD voxels colocalized in the concussion subject to the right corona radiata and right inferior longitudinal fasciculus.
sions
ootstrap analysis detected significantly changed WM in a single concussed athlete. Athletes with multiple subconcussive head blows had significant changes in a percentage of their WM that was over three times higher than controls. Efforts to understand the significance of these WM changes and their relationship to head impact forces appear warranted.
Journal title :
Magnetic Resonance Imaging
Journal title :
Magnetic Resonance Imaging