Title of article :
Thermodynamics of the multicomponent vapor–liquid equilibrium under capillary pressure difference
Author/Authors :
Shapiro، نويسنده , , Alexander A. and Stenby، نويسنده , , Erling H.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2001
Pages :
16
From page :
17
To page :
32
Abstract :
We discuss the two-phase multicomponent equilibrium, provided that the phase pressures are different due to the action of capillary forces. We prove the two general properties of such an equilibrium, which have previously been known for a single-component case, however, to the best of our knowledge, not for the multicomponent mixtures. The importance is emphasized on the space of the intensive variables P, T and μi, where the laws of capillary equilibrium have a simple geometrical interpretation. We formulate thermodynamic problems specific to such an equilibrium, and outline changes to be introduced to common algorithms of flash calculations in order to solve these problems. Sample calculations show large variation of the capillary properties of the mixture in the very neighborhood of the phase envelope and the restrictive role of the spinodal surface as a boundary for possible equilibrium states with different pressures.
Keywords :
Mixture , Vapor–liquid equilibria , capillary , Phase diagrams , stability , Kelvin equation
Journal title :
Fluid Phase Equilibria
Serial Year :
2001
Journal title :
Fluid Phase Equilibria
Record number :
1983070
Link To Document :
بازگشت