Title of article :
Molecular dynamics investigations on Lennard–Jones systems near the gas–liquid critical point
Author/Authors :
Litniewski، نويسنده , , Marek، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2001
Abstract :
NVT simulations on Lennard–Jones (L–J) systems near the gas–liquid critical point were performed by a direct approach. As a result, the two necessary conditions for simulating the systems in accordance with the thermodynamic limit were proposed: (i) L/ξ≳20 (L: the box-length, ξ: the correlation length), (ii) the total time of evolution, tE>500 L–J units, for ξ≈3.5. The proposed conditions are probably very close to the sufficient ones. The influence of finite-size effects on pressure and density of small systems was qualitatively predicted. The prediction was confirmed by the simulations but only for L markedly lower than the length of typical critical wave, 2πξ. For L markedly higher, the evolutions were dominated by an effect called here the instability effect. The effect became negligible just when the condition for L/ξ was fulfilled. The ξ0′ constant for L–J fluid was estimated from direct measurements of ξ to be 0.27±0.02 (L–J units). The thermodynamic parameters of the critical point, obtained from extrapolation, were in agreement with the results of other authors. The βC exponent was estimated from minimization for a high range of temperatures to be 0.346. A comparison of the efficiency of NVT and NpT methods was also performed and no distinct differences were noted.
Keywords :
Vapor–liquid equilibria , molecular simulation , model , Critical state , Statistical mechanics
Journal title :
Fluid Phase Equilibria
Journal title :
Fluid Phase Equilibria