Title of article :
Mechanical, microstructural and electrical evolution of commercially pure copper processed by equal channel angular extrusion
Author/Authors :
Higuera-Cobos، نويسنده , , O.F. and Cabrera، نويسنده , , J.M.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2013
Abstract :
Samples of commercially pure copper (ETP copper) were subjected to equal-channel angular pressing (ECAP) for up to 16 passes at room temperature following route Bc. Microstructural evolution was determined by oriented image microscopy (OIM) and differential scanning calorimetry (DSC) was used to estimate the stored deformation energy and the recrystallization temperature after each ECAP pass. On the other hand, electrical properties were correlated with the associated energy that results from the defects induced by ECAP. Results show that the stored energy rises on increasing ECAP deformation, while the recrystallization temperature decreases significatively. Also, mechanical properties after each pass were evaluated by tensile tests. Microstructural and mechanical features display that a stable microstructure is attained after four passes. Similarly, electrical conductivity decreases up to a saturation state at increasing ECAP passes.
Keywords :
electrical conductivity , Equal channel angular pressing (ECAP) , Electron Backscattered Diffraction (EBSD) , differential scanning calorimetry (DSC) , Copper
Journal title :
MATERIALS SCIENCE & ENGINEERING: A
Journal title :
MATERIALS SCIENCE & ENGINEERING: A