Title of article :
Evaluation of Microstructure and Mechanical Properties of Bulk Nanostructured Ti5Si3 and Ti5Si3-Al2O3 Nanocomposites
Author/Authors :
Sabooni, S Department of Materials Engineering, Isfahan University of Technology, Isfahan, Iran , Karimzadeh, F Department of Materials Engineering, Isfahan University of Technology, Isfahan, Iran , Abbasi, M.H Department of Materials Engineering, Isfahan University of Technology, Isfahan, Iran , Enayati, M.H Department of Materials Engineering, Isfahan University of Technology, Isfahan, Iran
Pages :
5
From page :
1
To page :
5
Abstract :
Mechanical alloying and pressure less sintering in vacuum have been used to produce bulk nanostructured Ti5Si3 and Ti5Si3-15wt.% Al2O3 nanocomposite. X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM) were used to study the microstructural characteristics of the samples. Indentation method was used to calculate hardness, elastic modulus and fracture toughness of bulk samples. The results showed that the nanometric grains were obtained through mechanical alloying and remained in nanometric scale after subsequent sintering. It was also observed that the in-situ produced Al2O3 through mechanochemical reaction has amorphous structure which was crystallized during sintering process. Nanohardness, elastic modulus and fracture toughness of Ti5Si3-15wt.% Al2O3 nanocomposite were calculated as 1660 HV, 238 GPa and 5.5 MPa.m1/2 ,respectively, that are higher than those of the monolithic Ti5Si3. Toughening mechanisms based on crack deflection and crack bridging were suggested as responsible factors for fracture toughness increase of the Ti5Si3/Al2O3 nanocomposite.
Keywords :
Intermetallics matrix composite , Mechanical alloying , Fracture toughness , Nanoindentation , Powder processing
Journal title :
Astroparticle Physics
Serial Year :
2017
Record number :
2462423
Link To Document :
بازگشت