• Title of article

    Long-term prediction of the crude oil price using a new particle swarm optimization algorithm

  • Author/Authors

    JAMADI, FARNAZ Department of Physics - Sirjan University of Technology - Sirjan - Iran , SALAHSHOOR MOTTAGHI, ZAHRA Department of Computer Engineering - Faculty of Engineering - University of Guilan - Rasht - Iran , MAHMOODABADI, MOHAMMAD JAVAD Department of Mechanical Engineering - Sirjan University of Technology - Sirjan - Iran , ZOHARI, TAIEBEH Department of Mechanical Engineering - University of Politecnico di Milano - Milan - Italy , BAGHERI, AHMAD Department of Mechanical Engineering - Faculty of Engineering - University of Guilan - Rasht - Iran

  • Pages
    6
  • From page
    17
  • To page
    22
  • Abstract
    Oil is one of the most precious source of energy for the world and has an important role in the global economy. Therefore, the long-term prediction of the crude oil price is an important issue in economy and industry especially in recent years. The purpose of this paper is introducing a new Particle Swarm Optimization (PSO) algorithm to forecast the oil prices. Indeed, the PSO is a population-based optimization method inspired by the flocking behavior of birds. Its original version suffers from tripping in local minima. Here, the PSO is enhanced utilizing a convergence operator, an adaptive inertia weight and linear acceleration coefficients. The numerical results of mathematical test functions, obtained by the proposed algorithm and other variants of the PSO elucidate that this new approach operates competently in terms of the convergence speed, global optimality and solution accuracy. Furthermore, the effective variables on the long-term crude oil price are regarded and utilized as input data to the algorithm. The objective function of the optimization process considered in this research study is the summation of the square of the difference between the actual and the predicted oil prices. Finally, the long-term crude oil prices are accurately forecasted by the proposed strategy which proves its reliability and competence. © 2020 Journal of Energy Management and Technology keywords: Particle swarm optimization, Long-term prediction, Crude oil price, Mathematical test functions.
  • Keywords
    Particle swarm optimization , Long-term prediction , Crude oil price , Mathematical test functions.
  • Journal title
    Journal of Energy Management and Technology
  • Serial Year
    2021
  • Record number

    2545895