Title of article :
Optimization of Operating Conditions for CO Hydrogenation to Hydrocarbon via Response Surface Method
Author/Authors :
Delavari ، Saeed Department of Chemical Engineering - Islamic Azad University, Gachsaran Branch , Mohammadi Nik ، Hossein Department of Chemical Engineering - Islamic Azad University, Gachsaran Branch , Mohammadi ، Nooshin Department of Chemical Engineering - University of Sistan and Baluchestan , Samimi ، Amir Risk Epecialist and Process Engineer in Oil and Gas Refineries , Zolfegharifar ، Yaghoub Department of Building Constructions and Structures, - South Ural State University , Antalovits ، Ferenc Programtervező Informatikus - Eötvös Lórànd Tudomànyegyetem Budapest (ELTE) , Niedzwiecki ، Lukasz Department of Boilers - Burners and Energy Systems, Faculty of Mechanical and Power Engineering - Wroclaw University of Science and Technology , Mesbah ، Rashid Department of Civil Engineering - Memorial University of Newfoundland
From page :
178
To page :
189
Abstract :
Clean hydrocarbon is an alternative source of other fuels like coal and natural gas. Based on the literature, the significance of hydrocarbon production via Fischer-Tropsch synthesis (FTS) process cause to develop a new mathematical algorithm response surface methodology (RSM)/ design of experiment (DOE). The influence of important factors, like pressure, temperature and feed ratio (H2/CO) on the performance of the FTS are examined. The experiments are conducted in the range of: P = 1.9-3.75 bar, T = 523-563 K, and H2/CO ratio = 0.85-1.85 at set space velocity (2000 h-1). A second-order model is developed via RSM in terms of independent input variables to describe the CO conversion and selectivity of CO2 and C5+ as the responses. It is concluded that at low temperature and H2/CO ratio, CO2 selectivity increase significantly and C5+ selectivity decreases appreciably when pressure increases. Moreover, at low pressure an increase in temperature, reduces CO conversion. According to contour plots and analysis of variance (ANOVA), it is illustrated that the maximum CO conversion was obtained at P = 3.21 bar, T =563 K and H2/CO = 1.85 while for C5+ the maximum is observed at P = 3.67 bar, T = 529.1 K, and H2/CO = 0.91, and CO2 selectivity is minimized at P = 1.93 bar, T = 563 K and H2/CO = 1.85. The predicted conversion and selectivity are in good accordance with experimental results which is an indication of the accuracy of RSM methodology in designing and optimizing the FT process.
Keywords :
Operating conditions , FTS , RSM , DOE , Optimization
Journal title :
Chemical Methodologies
Journal title :
Chemical Methodologies
Record number :
2567728
Link To Document :
بازگشت