Abstract :
The existence link of $n$-ary prime subhypermodules and $n$-ary prime hyperideal in $(m, n)$-hyperrings is investigated by multiplication $(m, n)$-hypermodules. An $(m, n)$-hypermodule $(M, f, g)$ over a commutative Krasner $(m,n)$-hyperring$(R, h, k)$ is called a multiplication $(m, n)$-hypermodule if for each subhypermodule $N$ of $M$, there exists a hyperideal $I$ of $R$ such that $N =g(I, 1^{(n-2)}, M)$. Here we intend to analyze extensively the multiplication $(m,n)$-hypermodules. We will study primary subhypermodules in context of multiplication $(m, n)$-hypermodules. Also, intersections and sums of the multiplication $(m,n)$-hypermodules are investigated.
Keywords :
Primary subhypermodule , maximal hyperideal , multiplication (m , n) , hypermodule